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Toxins produced by Harmful Algal Blooms (HABs) are a health 
hazard to humans and animals, and incur a large financial 
burden to water utilities and other water quality stakeholders 

Algae like 
cyanobacteria 

can create toxins
Just like the weather, value 
is in knowing IN ADVANCE 

that a bloom is coming

Then we use math and 
algorithms, but…
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Differential 
Sampling 

(data rich vs 
data poor)

Ecosystem 
Uniqueness 
(no general 

solution 
possible)

Ecosystem 
Connectivity 

(open vs 
closed 

systems)

Timescales 
(weeks, months, 
years, decades)
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We have been developing cyberinfrastructure and a suite of 
data modeling tools that help address these HAB challenges:

Operational 
(Detroit Lake)

Cloud 
Infrastructure

Seasonal and 
Climate sensitivity 

(CYAN)

Next Gen 
Analytics
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Operational Forecasts
Detroit Lake: Bayesian Model Averaging framework applied to 
the in situ data collected from the lake to provide daily 1-week 
and 2-week forecasts of cyanobacteria and toxin concentrations

Operational  Dashboard 
(Detroit Lake)

We expanded the Bayesian Model 
Averaging approach to include neural nets 
in addition to linear and non-linear functions

Based on empirical 
samples



T 
P 
L

Long-term Forecasts
In addition to operational forecasts (1-2 week timescales), we 
have been developing seasonal (6 month) and decadal 
forecasts (e.g. 2030, 2050, 2100).



T 
P 
L

Long-term Forecasts
In addition to operational forecasts (1-2 week timescales), we 
have been developing seasonal (6 month) and decadal 
forecasts (e.g. 2030, 2050, 2100).

CYAN national data



T 
P 
L

Long-term Forecasts
In addition to operational forecasts (1-2 week timescales), we 
have been developing seasonal (6 month) and decadal 
forecasts (e.g. 2030, 2050, 2100).

CYAN national data PRISM (OSU) downscaled 
weather/climate data



T 
P 
L

Long-term Forecasts
In addition to operational forecasts (1-2 week timescales), we 
have been developing seasonal (6 month) and decadal 
forecasts (e.g. 2030, 2050, 2100).

CYAN national data PRISM (OSU) downscaled 
weather/climate data

Machine learning 
modeling



T 
P 
L

Long-term Forecasts
In addition to operational forecasts (1-2 week timescales), we 
have been developing seasonal (6 month) and decadal 
forecasts (e.g. 2030, 2050, 2100).

Machine learning 
modeling



T 
P 
L

Long-term Forecasts
In addition to operational forecasts (1-2 week timescales), we 
have been developing seasonal (6 month) and decadal 
forecasts (e.g. 2030, 2050, 2100).

Machine learning 
modeling

Long-range weather forecasts



T 
P 
L

Long-term Forecasts
In addition to operational forecasts (1-2 week timescales), we 
have been developing seasonal (6 month) and decadal 
forecasts (e.g. 2030, 2050, 2100).

Machine learning 
modeling

CMIP6 Climate Projections
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network

Is it summer?
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Low HAB probLow winds?

Yes No

Low HAB probHigh HAB prob

Glass box 
Decision 

Tree

Th
e 

Le
ar

ni
ng

 B
ou

nd
ar

y



T 
P 
L

Next Gen: Transfer Learning
Water quality modeling suffers from the “lots of small data” 
problem (i.e. its not a big data problem).



T 
P 
L

Next Gen: Transfer Learning
Water quality modeling suffers from the “lots of small data” 
problem (i.e. its not a big data problem).

Lots of 
Historical


Data

Real-time

Data



T 
P 
L

Next Gen: Transfer Learning
Water quality modeling suffers from the “lots of small data” 
problem (i.e. its not a big data problem).

Lots of 
Historical


Data

Real-time

Data

Little 
Historical

Data

Real-time

Data



T 
P 
L

Cloud Data Infrastructure
It's not just about modeling though. We’re learning how 
important it is to have a unified, standardized and accessible 
(via API) database: AWS Data Lake + database…

Collaborators in a 2021 Water Research Foundation 
project to develop a national water quality database for 

application to transfer learning

Unified, standardized 
Data Lake and 
database
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Conclusions: Measurable Usefulness
In sum, collectively we are doing really well monitoring and 
modeling our environments. I think the next steps are: 

1) synthesize all available data in a standardized database 
(Cyan, water samples, qPCR,  cubesat imagery, USGS… etc etc) 

2) developing metrics by which we can measure the impact of 
our monitoring efforts and modeling.

University of Michigan

In Summary: 

- Multimodal data 
synthesis and open 
access 

- Models: interpretable 
AI and transfer 
learning 

- Predictions: at weekly, 
monthly and decadal 
timescales 

- Measurable impacts
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